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Thermal pressurization

1. Frictional sliding
 generates heat.

2. Pore �uid expands
 more than rock.

3. Pore pressure increases
 if rate of heat production
 exceeds rate of �uid and
 heat transport.

4. E�ective normal
 stress decreases.
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References: Sibson (1973); Lachenbruch (1980); Mase and Smith (1985, 1987); Lee and Dela-
ney (1987); J. Andrews (2002); Noda and Shimamoto (2005); Wibberly and Shimamoto (2005); 
Rempel and Rice (2006);  Rice (2006);  Bizzari and Cocco (2006); Segall and Rice (2006).
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Questions

1. At what critical slip speed does thermal  pressurization
 dominate frictional weakening?

2. How does that critical slip speed depend
 on hydraulic di�usivity near the fault?

3. How does thermal pressurization in�uence
 earthquake nucleation?



Equations:  friction and stress

Equation of motion (elastic stress & radiation damping)
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Evolution law
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Equations:  �uid and heat transport

Shear heating on fault

Pore pressure di�usion

Homogeneous material causes pressure on the fault to 
be proportional to temperature on the fault (Rice 2006):

Thus we need only to compute the temperature �eld.
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Numerical simulations

• 2D simulations (fault is a line).

• Finite difference calculation for thermal diffusion
 normal to the fault.

• Automatic grid
 refinement if
 accuracy
 demands it.
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TP o�

Aging
law TP on

a/b = 0.8;   dc = 100 µm;   chyd = 1 × 10–6 m2/s;   (σ – p∞) = 140 MPa
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Slip
law TP o� TP on

a/b = 0.8;   dc = 100 µm;   chyd = 1 × 10–6 m2/s;   (σ – p∞) = 140 MPa
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Determining the critical velocity

Beyond a critical velocity vcrit , increasing �uid pressure is 
the dominant weakening mechanism.

Thermal pressurization
becomes important
well before seismic
slip speeds.
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vcrit and hydraulic di�usivity

Rice (2006) estimates chyd from recent studies of fault core 
permeability:   chyd = 5 × 10–7 m2/s to 7 × 10–7 m2/s.

Analytical vcrit

For aging law friction,
Segall & Rice (2006)
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Slip speed versus time

While thermal pressurization becomes important at slow 
slip speeds, it only slightly advances the time-to-
instability.
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Conclusions

1. Thermal pressurization becomes important during 
 quasi-static nucleation.
 • This may be inconsistent with hypothesized changes
  in behavior at intermediate earthquake magnitudes.

2. TP causes the nucleation zone to contract for both
 aging and slip laws.
 • Detecting earthquake precursory strain is even 
  more challenging.

3. TP does not significantly affect the time to nucleate.
 • Models of seismicity rate changes based on rate-
  state nucleation (e.g. Dieterich 1994) will not be
  biased by TP.
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