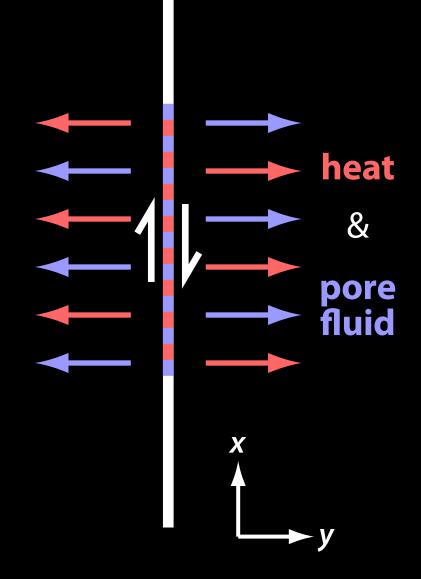
# Thermal pressurization is significant during earthquake nucleation—before seismic slip


Stuart V. Schmitt Department of Geophysics, Stanford University

Paul Segall Department of Geophysics, Stanford University

Takanori Matsuzawa National Research Institute for Earth Science and Disaster Prevention, Japan

## Thermal pressurization

- Frictional sliding generates heat.
- 2. Pore fluid expands more than rock.
- 3. Pore pressure increases if rate of heat production exceeds rate of fluid and heat transport.
- 4. Effective normal stress decreases.



References: Sibson (1973); Lachenbruch (1980); Mase and Smith (1985, 1987); Lee and Delaney (1987); J. Andrews (2002); Noda and Shimamoto (2005); Wibberly and Shimamoto (2005); Rempel and Rice (2006); Rice (2006); Bizzari and Cocco (2006); Segall and Rice (2006).

#### Questions

- 1. At what critical slip speed does thermal pressurization dominate frictional weakening?
- 2. How does that critical slip speed depend on hydraulic diffusivity near the fault?
- 3. How does thermal pressurization influence earthquake nucleation?

#### **Equations: friction and stress**

**Equation of motion (elastic stress & radiation damping)** 

$$\frac{G}{2\pi}\int_{-\infty}^{\infty}\frac{\partial u/\partial \xi}{\xi-x}\,d\xi-\mu(v,\theta)(\sigma-p)=\frac{\rho v_s}{2}v$$

**Friction law** 

$$\mu = \mu_0 + a \ln\left(\frac{v}{v_0}\right) + b \ln\left(\frac{\theta v_0}{d_c}\right)$$

**Evolution law** 

$$\frac{d\theta}{dt} = 1 - \frac{v\theta}{d_c} \quad \text{or} \quad \frac{d\theta}{dt} = -\frac{\theta v}{d_c} \ln\left(\frac{\theta v}{d_c}\right)$$
"aging law"
"slip law"

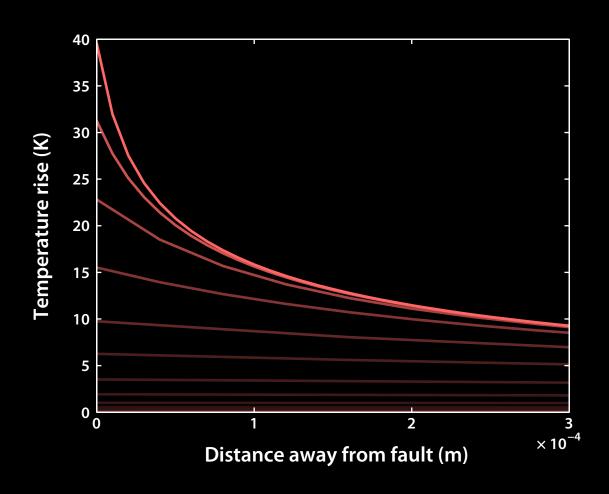
## **Equations: fluid and heat transport**

Shear heating on fault

$$\left. \frac{dT}{dy} \right|_{y=0} = -\frac{\tau v}{2\rho c_p c_{th}}$$

Pore pressure diffusion

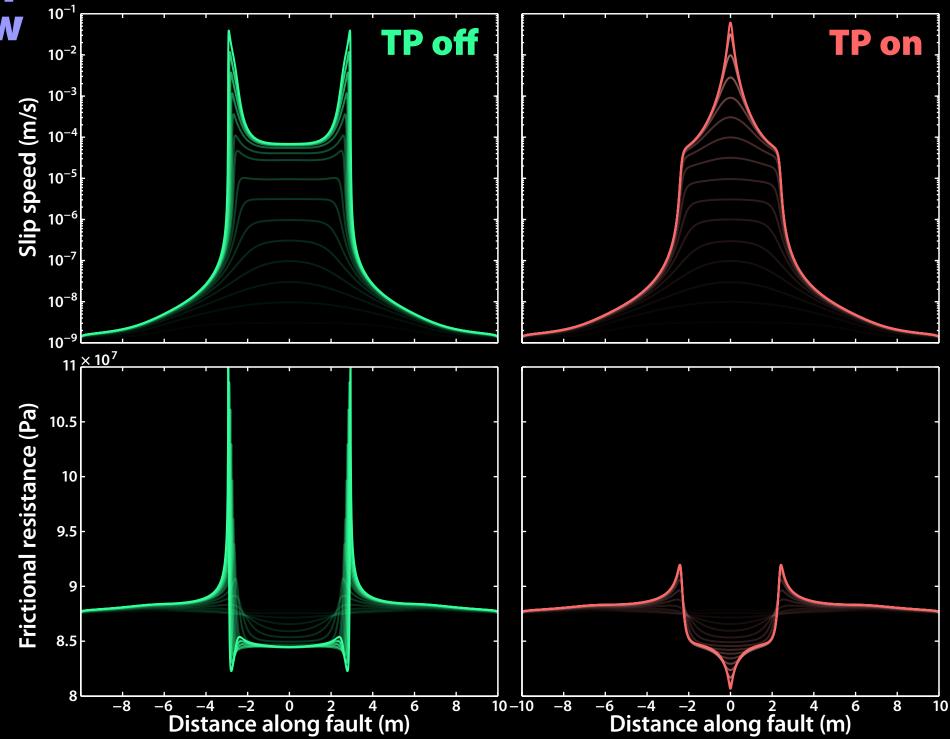
$$c_{hyd}\frac{d^2p}{dy^2}-\frac{dp}{dt}=-\Lambda\frac{dT}{dt}$$


Homogeneous material causes pressure on the fault to be proportional to temperature on the fault (Rice 2006):

$$\Delta p = \Lambda \left(1 + \sqrt{\frac{c_{hyd}}{c_{th}}}\right)^{-1} \Delta T$$
 where  $\Lambda = \frac{\lambda_f - \lambda_{\varphi}}{\beta_f + \beta_{\varphi}}$ 

Thus we need only to compute the temperature field.

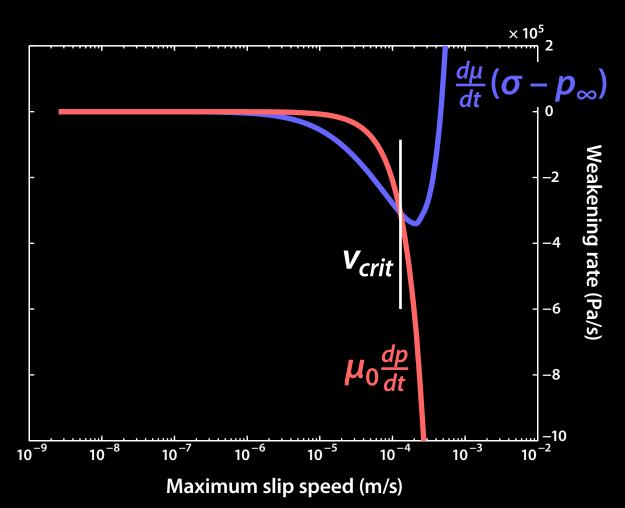
#### **Numerical simulations**


- 2D simulations (fault is a line).
- Finite difference calculation for thermal diffusion normal to the fault.
- Automatic grid refinement if accuracy demands it.



**Aging** a/b = 0.8;  $d_c = 100 \,\mu\text{m}$ ;  $c_{hyd} = 1 \times 10^{-6} \,\text{m}^2/\text{s}$ ;  $(\sigma - p_{\infty}) = 140 \,\text{MPa}$ **TP off** TP on  $10^{-2}$  $10^{-3}$ Slip speed (m/s)  $10^{-4}$  $10^{-5}$  $10^{-6}$  $10^{-7}$  $10^{-8}$  $10^{-9}$ 11 × 10<sup>7</sup> Frictional resistance (Pa) 10.5 10 9.5 8.5 8 Distance along fault (m) -10 -8 10 –10 10 Distance along fault (m)

Slip law

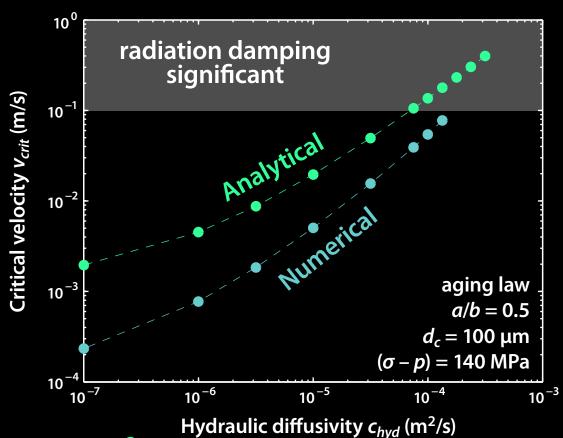

a/b = 0.8;  $d_c = 100 \,\mu\text{m}$ ;  $c_{hyd} = 1 \times 10^{-6} \,\text{m}^2/\text{s}$ ;  $(\sigma - p_{\infty}) = 140 \,\text{MPa}$ 



# **Determining the critical velocity**

Beyond a critical velocity  $v_{crit}$ , increasing fluid pressure is the dominant weakening mechanism.

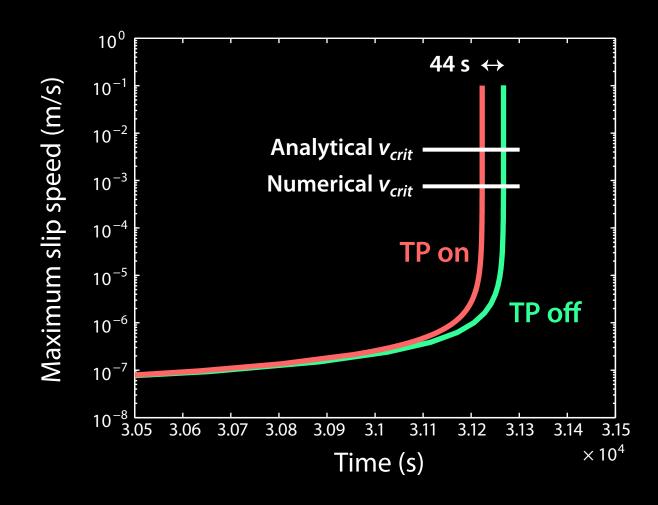
Thermal pressurization becomes important well before seismic slip speeds.




# *v***<sub>crit</sub>** and hydraulic diffusivity

Rice (2006) estimates  $c_{hyd}$  from recent studies of fault core permeability:  $c_{hyd} = 5 \times 10^{-7} \, \text{m}^2/\text{s}$  to  $7 \times 10^{-7} \, \text{m}^2/\text{s}$ .

# Analytical v<sub>crit</sub>


For aging law friction, Segall & Rice (2006) estimate:



$$v_{crit} = \frac{1}{\pi d_c} \left[ \frac{4(b-a) \rho c_p \left( \sqrt{c_{th}} + \sqrt{c_{hyd}} \right)}{\mu_0^2 \Lambda} \right]^{\frac{1}{2}}$$

### Slip speed versus time

While thermal pressurization becomes important at slow slip speeds, it only slightly advances the time-to-instability.



#### **Conclusions**

- 1. Thermal pressurization becomes important during quasi-static nucleation.
  - This may be inconsistent with hypothesized changes in behavior at intermediate earthquake magnitudes.
- 2. TP causes the nucleation zone to contract for both aging and slip laws.
  - Detecting earthquake precursory strain is even more challenging.
- 3. TP does not significantly affect the time to nucleate.
  - Models of seismicity rate changes based on ratestate nucleation (e.g. Dieterich 1994) will not be biased by TP.